
Excerpt from a sample smart contract
code for a mining royalty token
The unaudited excerpt below is based on Solidity, a contract-oriented programming language for writing
smart contracts. It is used for implementing smart contracts on various blockchain platforms, including
Ethereum. Specific royalty features, such as the exact commercial content of the royalty stream, have
not been included in this code. This fragment represents the simplest form of token that can be issued
on the Ethereum network.

Source: White & Case, GitHub

pragma solidity ^0.4.18;

contract ERC20Interface {
 function totalSupply() public constant returns (uint);
 function balanceOf(address tokenOwner) public constant returns (uint balance);
 function allowance(address tokenOwner, address spender) public constant returns

(uint remaining);

contract MiningRoyaltyToken is ERC20Interface, Owned, SafeMath {
 string public symbol;
 string public name;
 uint8 public decimals;
 uint public _ totalSupply;
 uint public startDate;
 uint public bonusEnds;
 uint public endDate;

 mapping(address => uint) balances;
 mapping(address => mapping(address => uint)) allowed;

 function MiningRoyaltyToken() public {
 symbol = “MRT”;
 name = “MiningRoyalty Token”;
 decimals = 18;
 bonusEnds = now + 1 weeks;
 endDate = now + 7 weeks;
}
function totalSupply() public constant returns (uint) {
 return _ totalSupply - balances[address(0)];
}

function balanceOf(address tokenOwner) public constant returns (uint balance) {
 return balances[tokenOwner];
}

